Nanotechnological Innovations in Healthcare


Abstract views: 54 / PDF downloads: 31

Authors

  • Halil Tunc HS of Endeavor, USA
  • Ahyan Hassan HS of Endeavor, USA
  • Hasan Rizvi HS of Endeavor, USA
  • Saifullah Alsaaty HS of Endeavor, USA
  • Emine Tunc University of Texas at Austin, USA

DOI:

https://doi.org/10.31039/plic.2024.11.258

Abstract

Nanotechnology is a concept much older and more prevalent than you may think. This article will delve into the applications of nanotechnology in various fields of medicine. Using ideas and research, old and new, this publication uses various studies to explore how nanotechnology saves, improves, and, in some cases, enables life. Frankly, the fields discussed further in this paper have nothing in common other than significant and interesting applications of nanotechnology. However, even with this diverse array of fields, only a fraction of nanotechnology’s massive impact across medicinal practice altogether is covered. Nanotechnology has broken into almost every major sector of medicine, finding use from routine practices, such as drug delivery, all the way to extraordinary procedures, such as bone regeneration. This article opens up on the applications of nanotechnology in the cardiovascular, reproductive, antiviral, skeletal, and surgical fields. A substantial amount of research has been conducted to show that nanotechnology is no longer limited to science fiction, and has a major impact that will only grow with time and technology. Doctors and scientists are making full use of nanotechnology’s capabilities by using it in any and all cases that require precision and effectiveness that is either impossible or extremely difficult and dangerous when performed by human hands. This makes many treatments less hazardous and more effective, saving and improving an exponential number of lives as time goes on.

References

Nanotechnologies. (n.d.). https://ec.europa.eu

Tiwari, S., Juneja, S., Ghosal, A., Bandara, N., Khan, R., Wallen, S. L., Ramakrishna, S., & Kaushik, A. (2022, March). Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-COV-2 variants of concern. Current opinion in biomedical engineering. https://www.ncbi.nlm.nih.gov

Applications of nanotechnology. Applications of Nanotechnology | National Nanotechnology Initiative. (n.d.). https://www.nano.gov/about-nanotechnology/applications-nanotechnology

Omidian, H., Babanejad, N., & Cubeddu, L. X. (2023, July 12). Nanosystems in Cardiovascular Medicine: Advancements, applications, and future perspectives. MDPI. https://doi.org/10.3390/pharmaceutics15071935

Atherosclerosis. Johns Hopkins Medicine. (n.d.). https://www.hopkinsmedicine.org/health/conditions-and-diseases/atherosclerosis

SUGIYAMA, N., HASEGAWA, H., KUDO, K., MIYAHARA, R., SAITO, R., MARUKI, C., TAKASE, M., KONDO, A., & OISHI, H. (2022, July 27). Cholesterol crystals in the retrieved thrombus by mechanical thrombectomy for cerebral embolism: A case report and literature review. NMC Case Report Journal. https://doi.org/10.2176/jns-nmc.2022-0095

Gong, F., Wang, Z., Mo, R., Wang, Y., Su, J., Li, X., Omonova, C. T. Q., Khamis, A. M., Zhang, Q., Dong, M., & Su, Z. (2022). Nano-sponge-like liposomes remove cholesterol crystals for antiatherosclerosis. Journal of Controlled Release: Official Journal of the Controlled Release Society, 349, 940–953. https://doi.org/10.1016/j.jconrel.2022.07.021

Dr. Ananya Mandal, M. (2023, August 18). What is VEGF?. News. https://www.news-medical.net/life-sciences/What-is-VEGF.aspx

Entering a new era in vascular and Cardiac Regeneration Research. (n.d.-a). https://www.astrazeneca.com/what-science-can-do/topics/next-generation-therapeutics/entering-a-new-era-in-vascular-and-cardiac-regeneration-research.html

Pretorius, D., Serpooshan, V., & Zhang, J. (2021, January 19). Nano-Medicine in the cardiovascular system. Frontiers. https://doi.org/10.3389/fphar.2021.640182

Golub, J. S., Kim, Y., Duvall, C. L., Bellamkonda, R. V., Gupta, D., Lin, A. S., Weiss, D., Robert Taylor, W., & Guldberg, R. E. (2010). Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. American Journal of Physiology-Heart and Circulatory Physiology, 298(6). https://doi.org/10.1152/ajpheart.00199.2009

Professional, C. C. medical. (n.d.). What is male infertility?. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/17201-male-infertility

Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2015). Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16(1), 555–561. https://doi.org/10.1021/acs.nanolett.5b04221

Ozdemir, D. (2021, September 23). Watch nanobot carry lazy sperm to fertilize living eggs. Interesting Engineering. https://interestingengineering.com/health/watch-nanobot-carry-lazy-sperm-to-fertilize-living-eggs

Hai, E., Li, B., Zhang, J., & Zhang, J. (2024). Sperm freezing damage: The role of Regulated Cell Death. Cell Death Discovery, 10(1). https://doi.org/10.1038/s41420-024-02013-3

Isaac, A. V., Kumari, S., Nair, R., Urs, D. R., Salian, S. R., Kalthur, G., Adiga, S. K., Manikkath, J., Mutalik, S., Sachdev, D., & Pasricha, R. (2017). Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochemical and Biophysical Research Communications, 494(3–4), 656–662. https://doi.org/10.1016/j.bbrc.2017.10.112

Falchi, L., Khalil, W. A., Hassan, M., & Marei, W. F. A. (2018). Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine, 6(2), 265–269. https://doi.org/10.1016/j.ijvsm.2018.09.001

Hozyen, H. F., Shamy, A. A., Fattah, E. M., & Sakr, A. M. (2023). Facile fabrication of zinc oxide nanoparticles for enhanced buffalo sperm parameters during cryopreservation. Journal of Trace Elements and Minerals, 4, 100058. https://doi.org/10.1016/j.jtemin.2023.100058

Khodaei-Motlagh, M., Masoudi, R., Karimi-Sabet, M. J., & Hatefi, A. (2022). Supplementation of sperm cooling medium with zinc and zinc oxide nanoparticles preserves rooster sperm quality and fertility potential. Theriogenology, 183, 36–40. https://doi.org/10.1016/j.theriogenology.2022.02.015

Tanaka, M., Izumiya, M., Haniu, H., Ueda, K., Ma, C., Ueshiba, K., Ideta, H., Sobajima, A., Uchiyama, S., Takahashi, J., & Saito, N. (2022, April 2). Current methods in the study of nanomaterials for Bone Regeneration. Nanomaterials (Basel, Switzerland). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000656/

Lyons, J. G., Plantz, M. A., Hsu, W. K., Hsu, E. L., & Minardi, S. (2020, July 17). Nanostructured biomaterials for bone regeneration. Frontiers. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2020.00922/full

Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., Feroze, A. H., Wong, V. W., Lorenz, P. H., Longaker, M. T., & Wan, D. C. (2015, July). Nanotechnology in bone tissue engineering. Nanomedicine : nanotechnology, biology, and medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476906/

Mali, S. (2012). Nanotechnology for surgeons. Indian Journal of Surgery, 75(6), 485–492. https://doi.org/10.1007/s12262-012-0726-y

Loizidou, M., & Seifalian, A. M. (2010, March 4). Nanotechnology and its applications in surgery. OUP Academic. https://academic.oup.com/bjs/article/97/4/463/6150283

Downloads

Published

2024-10-15

How to Cite

Halil Tunc, Hassan, A., Rizvi, H., Alsaaty, S., & Tunc, E. (2024). Nanotechnological Innovations in Healthcare. Proceedings of London International Conferences, (11), 171–181. https://doi.org/10.31039/plic.2024.11.258