
 

Functionality of Physics-Informed Neural Networks and Potential Future 
Impacts on Artificial Intelligence 

 

Tejas Nair* 

Merve Gokgol** 

 
 

Abstract 
Physics-informed neural networks, or PINNs, are indicative of a new approach that involves 
the use of scientific knowledge, as these programs adhere to laws of physics described by 
general nonlinear partial differential equations while solving problems that are related to 
physics. This is accomplished via programming these equations into the loss function, which 
ensures that the underlying system adheres to these laws. This paper will be discussing how 
PINNs function and analyze how they make use of physics when solving problems. PINNs 
can be used to model physical systems and phenomena in the real world, including 
combustion, quantum mechanics, and the simulation of fluid. The data embedded into the 
code of PINNs also serves to address the issue some neural networks may have with a lack of 
important data needed to solve relevant scientific issues. The rules and constraints PINNs 
have ensures that they will provide more realistic solutions in comparison to alternatives. 
Lastly, this paper will be discussing the potential future applications of PINN programming 
and functionality on future artificial intelligence (AI) development. PINNs have the potential 
to address complex scientific problems in a way that other solutions may not be able to, and 
as such, they are an important topic of discussion. 

Keywords: PINNs (Physics-Informed Neural Networks), Embedded Physics Equations, Loss 
Function 

 

 

https://doi.org/10.31039/ljis.2025.4.304 
 
 
*HS of Endeavor-Austin, USA, tejasnairreal@gmail.com  
**HS of Endeavor-Austin, USA 

 
London Journal of Interdisciplinary Sciences, 2025-4 65 

   

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License 

 

https://doi.org/10.31039/ljis.2025.4.304
mailto:tejasnairreal@gmail.com
https://londonic.uk/js/index.php/jis/issue/view/36
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Functionality of Physics-Informed Neural Networks and Potential 
Future Impacts on Artificial Intelligence 

Tejas Nair 
Merve Gokgol 

 
Introduction 
In recent years, the intersection of artificial intelligence and scientific computing has given 
rise to physics-informed neural networks (PINNs). These networks are a new type of deep 
learning model that incorporates fundamental physical laws directly into its architecture. 
Unlike traditional neural networks, which rely heavily on large datasets for training, PINNs 
use existing physical laws to guide the learning process, ensuring that the solutions generated 
are consistent with the underlying physical principles. 

The introduction of PINNs is especially significant in fields where traditional data-driven 
models fail due to a lack of high-quality data. PINNs, which embed physical laws into the 
neural network's loss function, provide a powerful tool for modeling complex physical 
systems like fluid dynamics, electromagnetism, and quantum mechanics. The ability of 
PINNs to generalize well, even with limited data, positions them as a promising alternative to 
conventional machine learning models in scientific applications. 

This paper aims to give a thorough overview of how PINNs work and how they incorporate 
physical knowledge into the learning process. Furthermore, the paper will investigate the 
potential effects of PINNs on future AI development, particularly their ability to tackle 
complex, real-world problems that have previously been difficult for traditional AI 
approaches (Cai et al., 2021). 

 

The Mechanism of Physics-Informed Neural Networks 
PINNs work by incorporating the governing equations of physical systems, such as PDEs, 
into their design. This is accomplished by incorporating these equations into the loss function 
of the neural network. The loss function is an important part of any neural network because it 
measures how well the model's predictions match the expected results. In the case of PINNs, 
the loss function is supplemented with terms representing the residuals of the PDEs, ensuring 
that the network's predictions follow the physical laws governing the problem at hand. 

One significant advantage of this approach is that it enables PINNs to solve inverse problems 
in which the goal is to determine unknown parameters or inputs from observed data. This is 
especially useful in scientific applications that require direct measurements, which may be 
difficult or impossible to obtain. By enforcing physical constraints, PINNs can infer these 
parameters with greater accuracy than traditional neural networks, which might otherwise 
produce physically inconsistent results. 

PINNs work by incorporating the governing equations of physical systems, such as PDEs, 
into their design. This is accomplished by incorporating these equations into the loss function 
of the neural network. The loss function is an important part of any neural network because it 
measures how well the model's predictions match the expected results. In the case of PINNs, 
the loss function is supplemented with terms representing the residuals of the PDEs, ensuring 
that the network's predictions follow the physical laws governing the problem at hand. 

Another distinguishing feature of PINNs is their ability to solve high-dimensional problems. 
Traditional numerical methods for solving PDEs, such as the finite element or finite 
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difference methods, frequently become computationally infeasible as the problem's 
dimensionality increases. PINNs, on the other hand, can efficiently solve high-dimensional 
problems by leveraging neural networks' expressive power, making them ideal for 
applications in climate modeling, material science, and computational biology (Mao et al., 
2020). 

 

Applications of Physics-Informed Neural Networks 
PINNs work by incorporating the governing equations of physical systems, such as PDEs, 
into their design. This is accomplished by incorporating these equations into the loss function 
of the neural network. The loss function is an important part of any neural network because it 
measures how well the model's predictions match the expected results. In the case of PINNs, 
the loss function is supplemented with terms representing the residuals of the PDEs, ensuring 
that the network's predictions follow the physical laws governing the problem at hand. 

PINNs have been successfully used to solve a variety of scientific problems, demonstrating 
their versatility and effectiveness. For example, in fluid dynamics, PINNs have been used to 
model the behavior of turbulent flows, which are notoriously difficult to simulate using 
conventional methods. By incorporating the Navier-Stokes equations into the loss function, 
PINNs can accurately predict flow patterns in complex geometries, making them a promising 
alternative to traditional computational fluid dynamics (CFD) approaches. 

In quantum mechanics, PINNs are used to solve the Schrödinger equation, which describes 
the behavior of quantum systems. PINNs' ability to handle high-dimensional problems makes 
them ideal for this task, as quantum systems frequently involve a large number of interacting 
particles. Enforcing the constraints imposed by quantum mechanics, PINNs can provide 
accurate solutions to problems that are intractable using traditional methods. 

PINNs have also shown promise in the simulation of combustion processes. Combustion is a 
highly nonlinear process that combines chemical reactions, heat transfer, and fluid flow. 
PINNs can model these interactions by incorporating relevant physical laws into their 
architecture, allowing them to precisely simulate combustion processes (Misyris et al., 2020). 

 

Future Impact on AI Development 
The incorporation of physical knowledge into neural networks has the potential to transform 
the field of artificial intelligence, particularly in scientific computing. By incorporating 
domain-specific knowledge into the learning process, PINNs can overcome some of the 
limitations of traditional neural networks, such as the requirement for large amounts of data 
and the tendency to produce physically inconsistent results. 

One of the most significant contributions of PINNs to AI development is their ability to 
provide more reliable and understandable solutions. Unlike traditional neural networks, which 
are frequently referred to as "black boxes" due to their lack of interpretability, PINNs provide 
a more transparent approach by ensuring that the solutions they generate are consistent with 
known physical laws. This not only improves the reliability of the results but also provides 
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insights into the underlying physical processes, making PINNs a valuable tool for scientific 
discovery. 

Furthermore, PINNs' ability to handle high-dimensional problems and generalize well with 
limited data makes them a promising approach for addressing complex scientific problems 
that have previously been beyond the scope of traditional AI methods. As AI evolves, the 
principles underlying PINNs could be applied to other fields, such as biology, medicine, and 
engineering, where domain-specific knowledge is critical for developing accurate and reliable 
models (Cuomo et al., 2022). 

 
Conclusion 
Physics-informed neural networks are a significant step forward in the field of artificial 
intelligence, providing a powerful tool for solving complex scientific problems. PINNs 
outperform traditional neural networks in terms of reliability and interpretability because they 
incorporate physical laws directly into the learning process. The potential applications of 
PINNs are numerous, ranging from fluid dynamics and quantum mechanics to combustion 
processes, and their impact on the future of AI development is expected to be significant. As 
researchers continue to investigate the capabilities of PINNs, they are poised to play an 
important role in advancing our understanding of the physical world and addressing some of 
the most difficult problems in science and engineering. 
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